Speeding-Up the K-Means Clustering Method: A Prototype Based Approach

نویسندگان

  • T. Hitendra Sarma
  • P. Viswanath
چکیده

The paper is about speeding-up the k-means clustering method which processes the data in a faster pace, but produces the same clustering result as the k-means method. We present a prototype based method for this where prototypes are derived using the leaders clustering method. Along with prototypes called leaders some additional information is also preserved which enables in deriving the k means. Experimental study is done to compare the proposed method with recent similar methods which are mainly based on building an index over the data-set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speeding-up the kernel k-means clustering method: A prototype based hybrid approach

Kernel k-means clustering method has been proved to be effective in identifying non-isotropic and linearly inseparable clusters in the input space. However, this method is not a suitable one for large data-sets because of its quadratic time complexity with respect to the size of the data-set. This paper presents a simple prototype based hybrid approach to speed-up the kernel k-means method for ...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

A Clustering Based Location-allocation Problem Considering Transportation Costs and Statistical Properties (RESEARCH NOTE)

Cluster analysis is a useful technique in multivariate statistical analysis. Different types of hierarchical cluster analysis and K-means have been used for data analysis in previous studies. However, the K-means algorithm can be improved using some metaheuristics algorithms. In this study, we propose simulated annealing based algorithm for K-means in the clustering analysis which we refer it a...

متن کامل

Predictors of speeding among drivers based on Prototype Willingness Model

Background: Every year 1.2 millions of people are killed in road accident, and speeding is a major contributor road crashes among young driver. Accounting 40% of fatal crashes involved speeding. The purpose of this study was determining predictor of speeding intention among young driver 19-25 years old young driver in ghaemshahr based on Prototype Willingness Model. Materials and methods: I...

متن کامل

A hybrid DEA-based K-means and invasive weed optimization for facility location problem

In this paper, instead of the classical approach to the multi-criteria location selection problem, a new approach was presented based on selecting a portfolio of locations. First, the indices affecting the selection of maintenance stations were collected. The K-means model was used for clustering the maintenance stations. The optimal number of clusters was calculated through the Silhou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009